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Abstract

Human body motions can be captured as a high-dimensional
continuous signal using motion sensor technologies. The re-
sulting data can be surprisingly rich in information, evenwhen
captured from persons with limited mobility. In this work, we
explore the use of limited upper-body motions, captured via
motion sensors, as inputs to control a 7 degree-of-freedom as-
sistive robotic arm. It is possible that even dense sensor signals
lack the salient information and independence necessary for
reliable high-dimensional robot control. As the human learns
over time in the context of this limitation, intelligence on the
robot can be leveraged to better identify key learning chal-
lenges, provide useful feedback, and support individuals un-
til the challenges are managed. In this short paper, we exam-
ine two uninjured participants’ data from an ongoing study, to
extract preliminary results and share insights. We observe op-
portunities for robot intelligence to step in, including the iden-
tification of inconsistencies in time spent across all control di-
mensions, asymmetries in individual control dimensions, and
user progress in learning. Machine reasoning about these sit-
uations may facilitate novel interface learning in the future.

Introduction
Motion sensor technologies have been used to interface
a person’s body movements to control machines such as
assistive and rehabilitation devices and robots (Casadio,
Ranganathan, and Mussa-Ivaldi 2012; Jain et al. 2015),
drones (Miehlbradt et al. 2018), and quadcopters (Macchini,
Schiano, and Floreano 2019). A common strategy for robot
control using body motions is to engineer a decoder de-
signed to map the high-dimensional body motion to a lower-
dimensional robot control signal space. Whenever the body
motion has an intrinsic dimension higher than the device
to be controlled, dimensionality reduction techniques, such
as principal component analysis (PCA) (Wold, Esbensen,
and Geladi 1987) or autoencoders (Kramer 1991) can be
used to implement efficient simultaneous and continuous
control of lower-dimensional devices (Pierella et al. 2018;
Ranganathan et al. 2019; Rizzoglio et al. 2021; Thorp et al.
2015). However, the design and the operation of such in-
terfaces become challenging when redundancy of the body
Copyright © 2021, Association for the Advancement of Artificial
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signals is reduced due to pathological conditions that im-
pact mobility or when controlling complex multi-articulated
robotic devices (Chau et al. 2017; Ison et al. 2015).

These challenges provide a ripe opportunity for robotics
autonomy to assist the user (Gopinath, Jain, and Argall 2016;
Losey et al. 2020; Muelling et al. 2017). For instance, iden-
tifying circumstances when a user is control deficient and
offering support, may not only benefit both long- and short-
term performance, but also help to build trust in assistive and
rehabilitation machines (Fasola and Mataric 2012; Langer
et al. 2019).

In this short paper we present preliminary observations,
analyses, and insights on data gathered from two uninjured
participants, within an ongoing study, in which a 7 degree-
of-freedom (DoF) robot arm is controlled, using a net of sen-
sors on the upper body. Study tasks are designed to famil-
iarize, train, and evaluate robot arm operation via this sen-
sor net, including on Activities of Daily Living (ADL) func-
tional tasks. We describe these experimental methods in the
METHODS section, share our immediate results in the RE-
SULTS section, and wrap-up our key takeaways and future
work in the CONCLUSION AND FUTURE WORK section.

Methods
Materials. The sensor net consists of four inertial measure-
ment unit (IMU) sensors (Yost Labs, Ohio, USA), placed bi-
laterally on the scapulae and upper arms and anchored to a
custom shirt designed to minimize movement artifacts. This
is the essence of what is known as the body-machine inter-
face (Casadio, Ranganathan, and Mussa-Ivaldi 2012). The
relative quaternion orientation of the four IMUs in the net
(16-dimensional) is mapped to a 6-dimensional subspace us-
ing PCA. The PCA map is precomputed using data from an
experienced user, performing a predefined set of movements,
and this same map is used for all participants. The lower-
dimensional subspace consists of 6D velocity commands—
3D position (x, y, z) and 3D rotation (roll, pitcℎ, yaw)—
which are used online to control a 7-DoF JACO robotic arm
(Kinova Robotics, Quebec, Canada). A GUI is displayed on
a tablet to provide a visualization, for the participant, of the
robot velocity control commands as well as a score for each
trial.
Protocol. There are three phases to the study protocol: (a)
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Figure 1: An overview of the interface-robot pipeline and the study tasks.

familiarization, (b) training, and (c) evaluation (Figure 1).
During familiarization, participants are encouraged to ex-
plore and become familiar with the system on their own, with
minimal constraints enforced. Both of the next phases make
use of a set of ten fixed targets . During training, two cate-
gories of reaching tasks are employed: reaches from a fixed
center position out to a target gi ∈ , and sequential reaches
between multiple targets gj ∈ . The ordering of targets is
random and balanced across days to avoid ordering effects,
and it is identical across participants. The evaluation phase
is split into a reaching and a functional task. In the reaching
task, participants reach to five targets that comprise a 3D-
star gk ∈  in fixed succession. The functional tasks are
designed to emulate four ADL tasks: (a) take a cup (upside-
down) from a dish rack and place it (upright) on the table,
(b) pour cereal into a bowl, (c) scoop cereal from a bowl, and
(d) throw away a mask in the trash bin.

A trial ends upon successful completion or timeout. For
reaching any target g ∈ , success is defined within a
strict positional (1.00 cm) and rotational (0.02 rad, or 1.14°)
threshold, and the timeout is 1.5 minutes. For the functional
tasks, experimenters follow codified guidelines to determine
when the tasks complete and the timeout is 3 minutes. Par-
ticipants are informed of the timeouts and asked to perform
tasks to the best of their ability. If there is any risk of harm
to the participant or the robot, study personnel intervene and
teleoperate the robot to a safe position before proceeding.
Participants. Each participant completes five sessions, exe-
cuted on consecutive days for approximately two hours each.
All sessions are conducted with the approval of the North-
western University IRB, and all participants provide their
informed consent. Two uninjured participants from this on-
going study are reported in this paper. P1 is a 31-year-old
male, and P2 is a 29-year-old female; both participants are
right-handed.

Results
Control Access and Asymmetries. We characterize the two
participants’ control access by tracking the time spent mov-
ing the robot in each of the task space control dimensions
(x, y, z, roll, pitcℎ, yaw) during the 3D-star task. The per-
centage of time spent along positive and negative directions
of each of the six observed control dimensions is shown in
Figure 2.

P1 initially, on Day 1, spends a majority of time in only
two control dimensions (31% in x, and 44% in roll); this is
not as apparent for P2. Access to control dimensions, for both
participants, is generally asymmetric, with each participant

largely accessing either positive direction or negative direc-
tion of each control dimension.

Over time, the distribution of control access tends to
equalize across dimensions for P1 only. The evolution is not
necessarily smooth, as swift changes can be observed be-
tween consecutive days (Day 1 → Day 2). The final distri-
butions themselves differ markedly between the two partic-
ipants. Most striking is the difference in y and roll access
on Days 4 and 5. Recall that the task itself is identical for
each participant, and the workspace is obstacle-free. While
it is possible that the paths planned by each participant would
differ even under perfect control execution, most likely spu-
rious movements are happening as the participants learn the
control mapping and interface operation. (This is further sup-
ported by the differences in the end-effector trajectories de-
picted in Figure 4.)

From Figure 2, we can also observe that the evolution of
access asymmetries follows a distinct pattern for P1 and P2.
P1 tends to reduce access asymmetries within a given dimen-
sion, as access of positive and negative commands becomes
more balanced for all dimensions, as early as Days 2 and
3. However, for P2, only some control dimensions become
more balanced over time (x, z), while others maintain asym-
metry (all rotational dimensions) or become more asymmet-
ric (y). In addition, the direction of the bias (positive versus
negative) is not always consistent.

We further examine the distribution of directional access
for each control dimension, along with the command magni-
tude, in Figure 3. Between Days 1 and 5, the histogram sup-
ports generally widen, and, with the exception of roll, each
control dimension, furthermore, exhibits an increase in vari-
ance between Days 1 and 5. Each of these trends are visible
in the box plots and the changes in the first- and second-order
statistics (mean and variance) of the observed commands be-
tween days.
Task Performance. To better visualize human learning over
the multiple study sessions, we plot the robot end-effector
position on Days 1 and 5 in Figure 4. In general, for both
participants, movements become more successful in reach-
ing (or reaching closer to) the target, more directed (closer
to the shortest path), and temporally front-loaded, with the
bulk of the distance traveled occurring early. Much of the
execution time is spent either in late-execution recovery or
in the achievement of final orientation, which requires fine-
motor commands (e.g., target 5 on Day 5, P1). P2 sometimes
reaches near targets early, and then falls into traps of recovery
because of P2’s difficulty with issuing +y (needed for targets
2 and 4) and −z (needed for target 1) commands. Each par-



Figure 2: Five-day evolution of proportion of time spent, in each control dimension, for participants P1 (top) and P2 (bottom)
performing the 3D-star task. (Zero commands not included.)

Figure 3: First and last day comparison of histograms of observed robot commands within each control dimension, as each
participant (P1 top, P2 bottom) executes the 3D-star task. Standard box plots of robot commands are presented above each
respective histogram.

ticipant, furthermore, exhibits an increase in the number of
control commands (a decrease in zero commands) between
the first and last days, observed in Figure 4 and from the raw
counts of robot commands (not shown). There is also gener-
ally a trend of increasing variance across control dimensions
between Days 1 and 5; whether this trend is a sign of in-
creased control access and learning or from spurious move-
ments is presently unclear, however.
Opportunities for Robotics Intelligence. Learning to con-

trol complex robots using novel high-DoF interfaces presents
many challenges that can be mitigated with the support of
robotics intelligence that is designed to be aware and adap-
tive to the user. Such intelligence might compensate for char-
acteristics of control asymmetries or deficiencies, inconsis-
tencies in time spent across control dimensions, or short- and
long-term interface learning, for instance.

Although not presented in this short paper, subjective
feedback gathered via questionnaire indicates that the robot



(a) P1; Day 1 (b) P1; Day 5 (c) P2; Day 1 (d) P2; Day 5
Figure 4: Trajectory plots of robot end-effector position during the 3D-star task on Days 1 and 5, for both participants. The task
consists of reaching to five different targets (⬥) in succession. Start (l) and end (6) points for each reach, and the straight-line
path between them (dotted line), are shown. Each target, start, end, and straight-line path for a single reach are the same color.

control is unintuitive at times. There are instances when par-
ticipants feel uncertain about how to move the robot in cer-
tain dimensions, despite having become familiar with the dy-
namics of the robot, and other instances where slight differ-
ences in a participant’s movements lead to the robot mov-
ing in unexpected directions. As a result, we observe partic-
ipants regularly issuing unintended commands through the
interface—either by moving in the undesired direction of
an intended control dimension or activating an unintended
dimension altogether. The result is time spent attempting
corrections and recovery instead of progressing towards
task goals. The use of interface-aware autonomy (Gopinath,
Nejati-Javaremi, and Argall 2021) that infers about and pre-
vents these unintended commands in a shared-control frame-
work could not only prevent the subsequent need for correc-
tive action, but can also be used within a training and re-
habilitation framework to aid in learning to provide control
commands through the interface.

Conclusion and Future Work
In this short paper, we presented preliminary results from
a study with two uninjured participants in which they con-
trolled a high-DoF robotic arm, using limited upper body
movements, to perform a variety of reaching tasks. We pre-
sented some key insights on the typical control asymmetries
that arise as well as observations on human learning in the
context of high-DoF robot control. We also identified inter-
vention opportunities for robotics autonomy.

In the future, we will use the data and insights collected to
inform the development of an assistive autonomy paradigm.
The role of the paradigm will be to facilitate the user’s learn-
ing of the interface, while adapting to the user’s improve-
ment and compensating for any deficits in control. We plan
to use the results from this study and the developed auton-
omy paradigm to conduct a long-term user study, where par-
ticipants with spinal cord injury evaluate the efficacy of this
assistance paradigm.
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