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a b s t r a c t

In human–machine interfaces, decoder calibration is critical to enable an effective and seamless inter-
action with the machine. However, recalibration is often necessary as the decoder off-line predictive
power does not generally imply ease-of-use, due to closed loop dynamics and user adaptation that
cannot be accounted for during the calibration procedure. Here, we propose an adaptive interface that
makes use of a non-linear autoencoder trained iteratively to perform online manifold identification and
tracking, with the dual goal of reducing the need for interface recalibration and enhancing human–
machine joint performance. Importantly, the proposed approach avoids interrupting the operation of
the device and it neither relies on information about the state of the task, nor on the existence of
a stable neural or movement manifold, allowing it to be applied in the earliest stages of interface
operation, when the formation of new neural strategies is still on-going.

In order to more directly test the performance of our algorithm, we defined the autoencoder
latent space as the control space of a body–machine interface. After an initial offline parameter
tuning, we evaluated the performance of the adaptive interface versus that of a static decoder in
approximating the evolving low-dimensional manifold of users simultaneously learning to perform
reaching movements within the latent space. Results show that the adaptive approach increased the
representational efficiency of the interface decoder. Concurrently, it significantly improved users’ task-
related performance, indicating that the development of a more accurate internal model is encouraged
by the online co-adaptation process.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Understanding how we learn to interact with a machine is of
rimary importance when designing human–machine interfaces.
he ability of the nervous system to reorganize its structure and
reate novel neural pathways in response to learning is widely
ecognized (Dayan & Cohen, 2011; Donati et al., 2016; Kandel
t al., 2000). Motor training and skill learning rely on neural plas-
icity in the nervous system enabling each individual to adapt to
ew environments (Shadmehr & Mussa-Ivaldi, 1994; Shadmehr
t al., 2010; Wei et al., 2005), to learn new tasks (Mawase et al.,
017) and to efficiently operate a variety of devices (Danziger
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et al., 2009). On the other hand, to optimize the human inter-
actions with devices, it is necessary to design interfaces that
understand the user’s abilities, preferences, and intentions.

The approach followed by brain–machine interfaces (BMIs)
(Carmena et al., 2003; Shenoy & Carmena, 2014) is to decode
intended actions from high dimensional neural recordings, and
then convert (or encode) the decoded intentions into a lower
dimensional set of commands for operating a device (e.g., mov-
ng a computer cursor or robotic manipulator). Similarly, body–
achine interfaces (BoMIs) extract a low dimensional control
pace from more down-stream information related to the exe-
ution of voluntary movements, as body kinematics and mus-
le activity (Casadio et al., 2012; Farshchiansadegh et al., 2014;
iehlbradt et al., 2018; Rizzoglio et al., 2020).
The efficiency of an interface in transferring the user’s input

o the device is tightly dependent on the joint user-decoder
erformance. There are at least two main ingredients that make
he acquisition of interface control proficiency possible, (i) user

earning and (ii) decoder adaptation.
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In a typical BMI (Shanechi, 2017) the decoder is initialized by
a supervised calibration procedure, which creates a map based
on labelled examples of desired actions and corresponding neural
activities. However, a good calibration is not sufficient to achieve
proficient BMI control, as the performance of the decoder often
degrades and fluctuates when evaluated online, due to imperfect
predictions, recording instabilities, changes in neuronal proper-
ties, attentional changes, and changes brought about by learning
(Barrese et al., 2013; Downey et al., 2018). BoMI decoders suf-
fer from similar issues. The decoder of a BoMI, also referred
to as ‘‘forward map’’, is initialized by unsupervised identifica-
tion of the low-dimensional, latent manifold of unconstrained
users’ movements recorded during an initial calibration (Casadio
et al., 2010). This latent manifold is expected to change with
subsequent practice. Therefore, a discrepancy is likely to develop
in time between the evolving latent manifold of the user and
the initial BoMI forward map. Indeed, it has been observed that
extensive practice with a BoMI led to the consolidation of task-
specific movement strategies (Pierella et al., 2017) and several
studies in brain–machine interfaces demonstrated the existence
of a stable manifold of neural activity linked to BMI use and
interpreted this as the result of neural adaptation following ex-
tensive practice with the interface (Gallego et al., 2020; Ganguly
& Carmena, 2009; Oweiss & Badreldin, 2015; Shenoy & Carmena,
2014).

The consequence of adopting a fixed activity-intention map
after its initial offline tuning, is that the user is left with the
burden of learning how to use the interface for achieving new
goals within new operating conditions that the decoder has not
been optimized on.

Closed-loop supervised decoder adaptation in BMIs has been
proposed as an effective way to increase decoder performance
during use. This was the case when allowing the decoder param-
eters to smoothly change according to the inferred movement
goal during within-session interface operation (Dangi et al., 2013;
Orsborn et al., 2014). A very recent study considered instead
the case of performance loss arising from decoder instabilities
across sessions. They showed that by calibrating the decoder us-
ing features within the manifold of stable activity of the recorded
neurons, performance of the BMI can be reliably recovered by
manifold alignment across sessions (Degenhart et al., 2020). De-
spite contributing encouraging results, these current perspectives
rely either on the knowledge of user intent or on the presence of
an established manifold of neural activity linked to the use of the
BMI. Hence, they cannot be easily extended to facilitate the use of
the interface when the movement goal is unknown or when the
formation of new neural strategies is still ongoing and the activity
manifold has not yet consolidated (Oby et al., 2019).

Given the current limitations of closed-loop decoder adapta-
tion, we propose a procedure for facilitating interface operation
that does not rely on estimates of user intent and can be ap-
plied from the very initial stages of learning. The procedure is
initially developed for application with body–machine interfaces
and exploits a non-linear autoencoder (AE) network (Kramer,
1991) trained iteratively to identify and track the evolution of the
latent manifold of its inputs.

Previous work from our group suggested that individuals
training with a linear BoMI that was adapted iteratively based on
movement statistics increased movement efficiency compared to
a fixed interface and were able to develop a more faithful internal
representation of the BoMI forward map (De Santis et al., 2018;
De Santis & Mussa-Ivaldi, 2020). Building on these results, the
hypothesis of this study is that the operation of the interface will
be facilitated if the BoMI forward map is updated online so as to
match the evolving manifold of the user’s input. That is, in other
words, if the output manifold of the forward map and the user’s
movement manifold were isomorphic.
175
The major advantages of the proposed approach are that it
can be applied in the earliest stages of interface operation, it
does not require interrupting the operation of the interface, and
it does not need to incorporate information about the state of
the task, in contrast with other adaptive interfaces described in
the literature (DiGiovanna et al., 2009; Mahmoudi et al., 2008;
Sanchez et al., 2009). Moreover, the use of a non-linear algorithm
allows representing a curved manifold that is more consistent
with the variance structure of input signals (Portnova-Fahreeva
et al., 2020) compared to a linear approximation.

We decided to test our hypothesis within the framework
of body–machine interfaces, as they allow evaluating learning
of a low-dimensional manifold in a more immediate way, i.e.
without requiring spike sorting or other procedures necessary for
preprocessing neural activity. In addition, there has been only
preliminary evidence regarding the applicability of non-linear AEs
to the control of low dimensional devices (Pierella et al., 2018;
Vujaklija et al., 2018). Hence, the results of this work will also
serve as validation for the use of AEs in BoMI applications.

The following sections are structured as follows.
We first describe some preliminary concepts (Section 2. Pre-

liminaries). We introduce the framework of the body–machine
interface (Section 2.1) and how it can be implemented using non-
linear AE (Section 2.2). At this stage, we assume the interface to
be fixed after calibration (i.e., fixed autoencoder).

Then, we propose an implementation of iterative learning of a
non-stationary latent manifold and we call this adaptive autoen-
coder (a-AE) (3.1). Finally, we give details of the two experiments
we carried out for validating the performance of the a-AE both
offline (3.3) and online (3.4). In the first study, we performed a
sensitivity tuning to identify the hyperparameters that allow the
a-AE to smoothly track a non-stationary movement distribution.
This operation was conducted offline on real data collected from
a naive BoMI user performing a reaching task with a fixed BoMI.
The second study was conducted with the purpose of testing if
training with an adaptive autoencoder facilitates user adaptation
to the interface when compared to a fixed BoMI. In other words,
we verified whether human–machine interaction might benefit if
modelled as a bi-directional adaptation (i.e., co-adaptation) of a
learning brain with a learning interface. During this online test,
the a-AE hyperparameters were set as those that yielded the best
performance in the first study.

2. Preliminaries

2.1. Body–machine interfaces

BoMIs (Casadio et al., 2012) are a class of human–machine
interfaces that provide a link between human body motions and
an external machine. The general purpose of a BoMI is to enable
its user to retain a complete or shared control over the device
through signals derived from the user’s body. The BoMI exploits
the assumption that the signals needed to control the external
device lie on a low-dimensional manifold embedded within the
higher-dimensional body signal space. In a BoMI, sensors (e.g.,
nfrared markers Casadio et al., 2010, inertial measurement units
arshchiansadegh et al., 2014, electromyographic electrodes Riz-
oglio et al., 2020) are placed on the upper body of the user to
ecord a d-dimensional vector of body signal, q. A forward map
(.) is then constructed to transform q into an m-dimensional
ontrol vector, p, (with m < d) encoding the commands for
controlling an external device (e.g., computer cursor, powered
wheelchair, quadcopter):

p = f (q) (1)

The BoMI forward map f is determined in a calibration session,
here BoMI users are asked to freely move their limbs so as to
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xplore their range of motion. This procedure is not task-related,
s users do not receive visual feedback of their movements and
re not yet connected to the device. Data collected during calibra-
ion are then used as training set for a dimensionality reduction
DR) algorithm that derives f by extracting the low-dimensional,
-D, manifold in which the highest amount of variance of body
ignals is available. Common iterations of BoMIs exploit linear DR
ethods to extract such low-dimensional manifold, e.g. Principal
omponent Analysis (PCA) (Wold et al., 1987), or Kalman Filter
Seáñez González et al., 2016). In this study, we explore the use
f a non-linear DR algorithm, autoencoder networks.

.2. Fixed autoencoder

AEs are unsupervised artificial neural networks capable of
earning efficient lower dimensional representations of the input
ata without labelled data. An AE is a cascade of two components:
n encoder E that converts the inputs to a lower dimensional
atent representation, or code, followed by a decoder D that
onverts the latent representation into the outputs, with the same
imensions as the inputs. An AE attempts at learning to perform
he identity map, copying its input, q, to its output, q̂(w, b), with
inimum loss, thus learning an efficient internal representation
f the inputs within their latent manifold. This is achieved by
inimizing the mean squared error between q and q̂:(
q, q̂

)
=

1
k

k∑
i=1

√(
q̂i − qi

)2 (2)

with k being the number of samples of q. w and b are the
parameters of the AE, representing the matrices of weights and
biases of each layer of the network, respectively. The update rule
for the AE parameters is:

w← w− α∇wJ , b← b− α∇bJ (3)

In this study, we used an AE with five layers (see Fig. 1) and
Batch Gradient Descent (BGD) (Ruder, 2016) to minimize J . As in
the case of the AE proposed by Kramer (1991), we chose a non-
linear activation function for the hidden layers and a linear acti-
vation function for the code and output layers. We did not opt for
a deeper network because we aimed at employing a parsimonious
architecture. An AE fed with the n-dimensional vector containing
the body-signals (q) applies the following transformations:

p = E (q) = w2 (tanh (w1q+ b1))+ b2 (4)

q̂ = D (p) = w4 (tanh (w3p+ b3))+ b4 (5)

where wi and bi, i = 1: 4 are the matrices of weights and biases
of the ith layer, while q̂ is the n-dimensional vector containing
the body-signals reconstructed by the AE.

In the BoMI context, the encoder sub-network E can be used
as a forward map in Eq. (1). Thus, the vector p includes the
commands for the control of the m-dimensional external device.
Importantly, unlike other non-linear methods for DR (e.g., Isomap
enenbaum et al., 2000), after training the AE on a data set,
he encoder E projects new incoming data on the same latent
anifold derived from the training data.

. Methods

.1. Adaptive autoencoder

Here we describe the algorithm to adapt the interface accord-
ngly to the evolving manifold of the user’s input. We refer to this
lgorithm as adaptive autoencoder (a-AE).
The a-AE consists of a memory element and a learning element
Fig. 2). The memory element stores samples of the data depicting

176
Fig. 1. Autoencoder (AE) network structure used in this study. The encoder part
was a densely connected network that transformed an eight-dimensional input
layer into a first hidden layer of the same dimensionality and subsequently
a two-dimensional code layer. The decoder transformed the 2D latent space
into a second 8D hidden layer and finally back to an 8D output layer. The first
and second hidden layers applied a non-linear transformation (i.e., hyperbolic
tangent) to their inputs.

the state of the user (e.g., body motion). The learning element
intervenes with a certain frequency to update the parameters of
the AE by maximizing its fitness to the data stored in the memory.
The parameters that govern the response of the a-AE are:

• fu, the frequency of learning element updates. An update
iteration n is performed every 1/fu seconds.
• k, the size of the memory element, or equivalently the

length of the training batch available at each update iter-
ation n - q(n), the history batch.
• β , the number of BGD steps over the history batch q(n).

Increasing β increases the goodness of fit of the a-AE on the
history batch.
• α, the learning rate parameter, which determines the size

of each step taken in the direction of the gradient of J
(Eq. (3)). Higher values of α accelerate convergence towards
the minimum of J.

Every 1/fu seconds, the learning element triggers an update
iteration n to adapt the AE parameters to the history batch stored
in the memory. Namely, it runs β BGD steps over q(n) as in Eq. (3).
To facilitate the a-AE tracking of the user’s latent manifold, the
AE parameters are updated via transfer learning (Bengio, 2012).
Namely, at the start of each update iteration, the parameters of
the AE are set to be equal to those of the previous iteration. In
the generic n update iteration, the history batch q(n) consists of k
amples. If k ≥ fs/fu, where fs is the sampling frequency of q, then
–(fs/fu) are samples from the preceding update step and (fs/fu)
re new samples. Instead, if k < fs/fu there will be no overlap
etween successive training batches. The pseudocode of the a-AE
s shown in Table 1. The block diagram of the a-AE that we tested
nline is shown in Fig. 2.

.2. Experimental methods

This study consisted of two experiments. The first was an
ffline test of the proposed adaptive algorithm. The results of this
xperiment were used to evaluate the adaptive algorithm track-
ng performance and its sensitivity over the choice of the learning
arameters. In the second experiment, we tested the adaptive
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(

Fig. 2. Block diagram of the adaptive autoencoder. Body motion recoded by IMUs, shown as orange boxes, is fed to the encoder E(n) and the memory element
(blue). E(n) extracts the user’s latent space, which is in turn directly converted into coordinates of the computer cursor. Every 1/fu seconds the learning element
red) activates, and the history batch q(n) stored in the memory element is fed through E(n) and D(n) to obtain q̂(n) . The parameters of AE(n) are finally updated via
minimization of the mean squared error between q̂(n) and q(n) .
algorithm by closing the loop of the BoMI. Specifically, we com-
pared static and co-adaptive non-linear BoMIs when controlling
the two coordinates of a computer cursor using body signals
derived from motions of the upper limbs with an embedding
dimensionality of six.

We recorded the motion of the arms with two inertial mea-
surement units (IMUs) (3 Space Sensors, Yost Labs, Portsmouth,
OH, USA). The sensors were placed bilaterally as shown in Fig. 2.
The IMU sensors used in this study derive orientation in the
quaternion format using a complementary filter that integrates
raw measurements from accelerometer, gyroscope, and magne-
tometer. However, we excluded the magnetometer from the IMU
complementary filter due to the presence of ferromagnetic struc-
tures and transient disturbances that made its measurements
unreliable and noisy. We therefore recorded an eight-dimensional
movement signal. The BoMI software was custom coded in C#.

3.3. Study I: Offline sensitivity tuning

The sensitivity tuning of the a-AE was carried out as an of-
fline simulation using the movement data recorded from a naive
individual performing reaching movements with a BoMI. The
procedure aimed at selecting the hyperparameter values that
would allow the adaptive AE to attain three conditions: (1) pro-
viding a stable representation of the user’s movement statistics,
i.e. by converging towards a minimum J over time in Eq. (2);
(2) minimizing the discontinuity of the interface at the moment
of the encoder update; (3) changing at a rate that is neither too
slow nor too fast. The discontinuity of the interface is a critical
point because it might affect its usability online when operating
an external device. For example, in this study, a discontinuous

adaptive interface would produce a sudden jump of the computer

177
Table 1
Pseudo-code for the a-AE.
Input: k, α, β , fu , n = 1, telapsed = 0
# Initialize AE(0) = {E(0),D(0)} with calibration data set q(0)

AE(0) = f (w(0), b(0)), q(1) = q(0)

while not terminated do:
# 1. Memory element: update the history batch q(n):
q(n) = append(q(n) , qi)
if size(q(n)> k), pop(q(n)[0])

# 2. activate the Learning element
if telapsed = 1\fu

# Step I. Transfer learning on w and b
w(n) ← w(n−1) , b(n)

← b(n−1)

AE(n) = f (w(n), b(n))
# Step II. Run BGD on w and b
for step in β

q̂(n)
= D(n)(E(n)

(
q(n)

)
)

w(n) ← w(n) − α∇wJ (q(n), q̂(n))
b(n)
← b(n)

− α∇bJ (q(n), q̂(n))
AE(n) = f (w(n), b(n))
end
q(n+1) = q(n)

n = n+ 1
telapsed = 0

end
end
Output: the AE model at current iteration n, AE(n)

cursor, which could be perceived as a perturbation and possibly
disrupt the user’s experience with the BoMI.

Previous studies suggested that the learning curves of users
operating a BoMI during a reaching task follow an exponen-
tial trend with time constants ranging from approximately 2 to
10 min (De Santis & Mussa-Ivaldi, 2020). This means that users
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isplay a 50% improvement in control performance only after the
irst 2 min of practice. Hence, it is desirable for the interface to
each a set point within approximately 2 min when updated on-
ine. Therefore, we set this to be the target value for the network
o converge (<1% residual error) during the offline sensitivity
uning. Note that this procedure involved the concurrent tuning
f two hyperparameters, the size k of the memory element, and

the network learning rate α. In order to estimate which values
yielded the most ideal behaviour, we fit a double exponential
function to the learning curve derived from each combination of
hyperparameters. We used the rate of convergence, defined as
the time constant (tau) of the fastest exponential as metric to
select the best candidates for the online test according to the rule
5*tau∼120 s.

To find a batch size that was representative of BoMI user’s
movement dynamic, we tested three values of k referring to
hort-term (2 s), mid-term (20 s) and long-term (60 s) memory.
revious studies with movement-based body–machine interfaces
Abdollahi et al., 2017; De Santis et al., 2018; De Santis & Mussa-
valdi, 2020; Pierella et al., 2017) have found that naïve users
rogress from several tens of seconds to complete a reaching
ovement towards a target to only a few seconds after some
ractice. Hence, in the context of a short bout (∼15–20 min)
f reaching task practice with the interface, the three levels of
emory provide each update step with the information regard-

ng within trial variation (2 s), data distribution when reaching
owards a few (1–5) different targets (20 s), and information
egarding movements distributed over a greater region of space
60 s).

Then, we chose to test values of learning rate with three
istinct orders of magnitude to evaluate which time scale would
ave allowed the adaptive AE to satisfy the 120 s criterion.
In this study, we set β equal to 10 steps of BGD and the

-AE update rate (1/fu) to 2 s. The choice of updating the AE
arameters every 2s was made to ensure a continuous (and quick)
pdate, that could keep track of the evolving movement manifold
f the BoMI user online. Ideally, the update should have been per-
ormed as fast as possible. However, we had to consider the time
hat the preprocessing operations (e.g., filling the memory buffer
ith the latest kinematic samples recorded) and the training of
he AE would have required. Since all these operations took, on
verage, little less than 1s to be completed, we decided to put
ome cushion and fix the update rate to 2s, in order to maintain
constant update rate throughout the experiment.
We included the Adaptive Moment Estimation (Kingma & Ba,

015) optimization to allow meeting this time requirements for
nline computation of the AE parameters. The a-AE ran in a
ustom-coded Python thread and all the optimization policies
ere implemented using Tensorflow (Abadi et al., 2016).

.4. Study II: Online test of the adaptive autoencoder

In the second study we tested the adaptive autoencoder by
losing the loop of the BoMI. During this online test, the a-AE
yperparameters were set as those that yielded the best perfor-
ance in the first study. In our BoMI, the encoder E mapped the
ight-dimensional IMU-vector (q) into the x–y cursor vector p:

= E (q)+ p0 (6)

The offset vector p0 was chosen to make a desired neutral
osition (i.e., rest position) of the body-space match a corre-
ponding reference position of the cursor. Moreover, the resulting
orkspace was then rotated and stretched in order to ensure
omplete coverage of the entire workspace of the cursor (Casadio
t al., 2010). While the overall philosophy of the BoMI is to
ase its operation on a customized mapping, adapted to each
178
individual user, here we had to sacrifice some of this philosophy
to the need of obtaining data that could be compared across sub-
jects. This required having all participants start from a common
initial condition, i.e. from the same initial mapping. To attain a
compromise between uniformity and customization, we decided
to base the initial BoMI mapping on movement data from a single
‘‘representative’’ user. A single individual (age 25, male), who did
not participate in the rest of the study, was asked to freely move
the arms exploring the full range of motion for 60 s. Movement
data, recorded during this calibration phase, were used as a
training data set. The encoder derived from this training data set
was taken as the initial encoder (E(0)). This same initial map was
set for all participants.

3.4.1. Participants
We enrolled twenty unimpaired subjects. They did not have

any known history of neuromotor or musculoskeletal disorders
and exhibited typical joint range of motion and muscle strength.
All participants gave their signed informed consent prior to the
test. All procedures were carried out in accordance with the
ethical standards of the Declaration of Helsinki and Northwestern
University IRB approved all human involvement in the study
(IRB protocol #STU00057856). Participants were divided in two
groups and assigned to one of the following study conditions:

• Fixed map (group F, N = 10, age 26.7 ± 6.9, four females):
participants were assigned a constant encoder E(0), defined
by the common calibration procedure. Therefore, each in-
dividual was presented with the same map which did not
change throughout the session.
• Adaptive map (group A, N = 10, age 26.3 ± 5.9, six females):

in this group, the encoder adapted to participants’ move-
ments following the a-AE algorithm validated in the first
experiment. Initially, the encoder was defined by the same
common calibration procedure as in the previous group E(0).
Then, the adaptive procedure would continuously update
the body-cursor mapping Et as a function of the evolving
user’s movements.

As a result of the tuning, the a-AE updated the network using a
history-batch of the last 60 s of the IMU data. 10 steps of BGD
with a learning rate α = 10−4 were applied to the network
trained in the previous iteration.

3.4.2. Protocol
The protocol consisted of a reaching task. The participant sat in

front of a 24" LCD computer screen, positioned about 1 m away
at eye level. The current position of the cursor and the targets
was displayed on the screen as circles of 0.8 cm and 2.4 cm
diameter respectively, similarly to previous studies involving a 2D
reaching task (Farshchiansadegh et al., 2014). Participants were
asked to move the cursor over the targets as rapidly as possible.
The sequence of target presentations was the same for all the
participants. A target was considered reached after the cursor had
been kept inside the target for at least 250 ms. The chosen time
allowed discriminating between movements actually directed to
and ending in the target and movements that brushed by the
target. The protocol, as summarized in Fig. 3, included two phases
of reaching: training and test.

3.4.3. Training phase
The training phase was divided in 8 epochs. Within an epoch,

the participants had to reach 4 targets (Fig. 3, grey dots) 8 times
each. After completing a reaching movement, participants had to
move the cursor towards the next target of the training sequence.
The order of target presentation was pseudorandomized, with
the condition that each target was not presented again before
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Fig. 3. Setup for the reaching task and training protocol. The participant was sitting in front of a computer monitor and was controlling a cursor using signals
generated by IMUs (red boxes). Training (grey) and test (blue) targets were uniformly distributed on a circle. Four training targets were placed in four directions
(45◦+k90◦), while eight test targets were placed in eight directions (22.5◦+k45◦). Each target was placed at the same distance L of 10.5 cm from HOME target.
ll 4 targets had been reached. In the last repetition of the
targets visual feedback of the cursor was removed, and the
articipants were asked to stop moving when they believed to
e in the target (blind trials). The goal of these blind trials was
o establish if the participants were guided by error feedback
r if, instead, they formed a feedforward command based on an
nternal representation of the cursor space.

During the first training epoch, the encoder for the adaptive
roup (A) was initialized with E(0) and kept constant for 60 s

(baseline). After that, the map was iteratively updated as de-
scribed in Table 1. Update of the map was suspended during blind
trials.

3.4.4. Test phase
The participants practised a centre-out reaching task to eight

target locations uniformly distributed on a circle (Fig. 3, blue
targets). After each successful reaching, they were asked to move
the cursor back to the central HOME target (Fig. 3, green target).
In each test the eight targets were presented once.

A total of three tests were presented: an initial test as baseline
before starting the experiment, a midway test after four epochs
of training, and a final test at the end of the experiment. For the
whole duration of each test, the control group (F) practised with
E(0), while the map update was suspended for the adaptive group
(A). Hence both groups practised with the same map during the
initial test epoch.

3.5. Outcome measures

3.5.1. Sensitivity tuning
To evaluate the convergence and the stability of the a-AE in

the offline sensitivity tuning we computed three metrics.
First, we quantified the tracking performance of the a-AE

based on the reconstruction error (RE). RE is defined as the
loss function described in Eq. (2), that was minimized every two

seconds during the online retraining of the AE. A reduction of the

179
reconstruction error implies that the mapping was providing a
stable representation of the AE training data set.

To quantify the stability of the interface when using the a-
AE, we considered the actual cursor vector p(n), and the cursor
vector, p̂(n), that would have been obtained without updating the
encoder:
p̂(n)
= E(n−1)(q(n))

p(n)
= E(n)(q(n))

(7)

where E(n−1) and E(n) are the two time-consecutive encoders
and q(n) is the movement set used in the training of the AE at
the current update iteration. Note that, even though the a-AE at
consecutive update iterations (E(n−1) and E(n)) was trained with
different movement set q, here we computed the cursor trajectory
using the same set q(n). This allowed us to evaluate the static
jump, defined as the L2 norm between the final k value of p̂(n)

(end of an update iteration) and the initial value of p(n) (beginning
of the next update iteration):

static jump =

√(
p̂(n)
k − p(n)

1

)2
(8)

Finally, we defined the rate of change between consecutive
updates by computing the L2 norm between p̂(n) and p(n):

rate of change =

√ k∑
i=1

(
p̂(n)
i − p(n)

i

)2
(9)

3.5.2. Online test
Four different measures were chosen to evaluate and compare

the performance of the fixed and the adaptive group during the
online test of the a-AE. Two of these were explicitly associated
with the task requirements:

• Trials completed (TC) number of reaching trials completed
during the training phase within a specific time frame. We
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computed the number of trials completed during baseline
and then during time intervals of two minutes, including
the final two minutes of training. Blind trials were not
considered in this metric.
• Endpoint Error (EE): the Euclidean distance between the

target position and the cursor position at the time of the
cursor re-appearance during blind trials.
The other indicators measured performance not explicitly
associated with the task requirements:
• Linearity Index (LI): maximum lateral deviation from the

straight line connecting the beginning and end of cursor
movement divided by distance between the same points.
This is an index of straightness of cursor movements.
• Movement Smoothness (MS): number of peaks in the cur-

sor velocity profile. We considered every peak larger than a
threshold that was set to be 15% of the maximum speed of
each trajectory. This is a measure of trajectory smoothness.

Besides analysing the task-related performances, we also
wanted to examine how the parameters of the a-AE evolved in
time as well as to compare the strategies of the fixed and the
adaptive group. Three metrics were devised for such purposes.

To assess the tracking ability of the a-AE, we monitored the
a-AE reconstruction error at each update iteration of online adap-
tation of the interface, as we did in the offline tuning. From this
measure, we derived the Variance Accounted For (VAF), defined
as:

VAF =

(
1−

var
(
q− q̂

)
var (q)

)
∗100 (10)

Higher values of VAF were associated with an increased good-
ess of fit of the AE at the n update iteration, and consequently
sign of an enhanced tracking ability of the a-AE towards par-

icipant’s latest movements. We then compared the VAF of the
daptive and the fixed group. In case of the a-AE successfully
racking user’s movement manifold, we expected its VAF to be
onsistently higher than that of the fixed algorithm.
Both groups were presented with a non-linear encoder

Eq. (4)). We made the hypothesis that participants learned to
inimize the ‘‘wasted’’ motion in the articulation space of the
’s. To characterize how the control strategy (or, equivalently, the
ovement distribution) was changing throughout training, we
omputed the bi-dimensionality index. It was defined as the VAF
y an AE model trained over each of the eight training epochs. The
E architecture was the same as in Fig. 1.
Finally, we wanted to determine whether the AE encoders in

he a-AE converged to a specific structure. This required evaluat-
ng the similarity between different AE structures. The problem
f assessing the similarity between neural networks had been
idely studied (Kornblith et al., 2019; Morcos et al., 2018). Here,
e followed a procedure described in Raghu et al. (2017) that
akes use of the Canonical Correlation Analysis (CCA) (Thomp-
on, 2005). Specifically, we used the CCA to compare the final
ncoder structure obtained at the end of the training between any
ouple of participants (i, j). The inputs of the CCA were:
tend
i = Etend

i (x)
tend
j = Etend

j (x)
(11)

x was designed as a vector of 3000 samples drawn from an
D gaussian distribution. To resemble the distribution of a typical
articipant, the mean and covariance of x were set equal to those
f the movement data from the same participant we used during
he offline tuning. Note that, by using the same synthetic input
, we ensured this metric to depend only on the structure of the
ncoder E. Since the CCA works by maximizing the correlation
180
ρm between its m inputs, we determined the representational
similarity as:

similarity =
1
2

2∑
m=1

ρm (12)

By maximizing the correlation between its inputs, the CCA
nsures the representational similarity metric to be invariant to
ny affine transformation. Higher values of similarity implied that
articipants converged towards a unique encoder. As an example
f the effect of the similarity between final AE structures in terms
f cursor control, we applied to the IMU data recorded by a
articipant during the final test epoch the final encoders of two
ther participants, one with a high and one with a low similarity
ndex respectively (the resulting cursor trajectories are shown in
he result section).

.6. Statistical analysis

To test whether the adaptive control affected the number of
rials completed per unit time with respect to the fixed control,
e performed a repeated measures analysis of variance (rANOVA)
ith time (level 1: baseline, level 2: last 2 min of training epoch)
s within-subjects factor and group (level 1: adaptive, level 2:
ixed) as between-subjects factor. We were interested in testing
he group per time interaction, and the effect of the group. We
id not test for the effect of time alone, as the duration of level 1
nd level 2 was different.
Similarly, to test the effect of time and group on the other

ndicators related to kinematic performance during training we
an a rANOVA with time (1-2: first and eighth training epochs)
s within-subjects factor and group (1-2: adaptive, fixed) as
etween-subjects factor.
We verified that the assumptions of rANOVA were met by

esting the sphericity of the data with the Mauchly’s test and
he normality of the data with the Anderson–Darling test. As a
esult, all data were normally distributed and spherical. Post-
oc analysis (Bonferroni correction) was carried out to verify
tatistically significant differences among factors whose effect
as found to be significant. The threshold for significance was
et at 0.05. For the post-hoc analysis, the Bonferroni-corrected
hreshold of significance was set to 0.025 (0.05/2). All analyses
ere performed in Statistica (Statsoft, Tulsa, OK, USA).

. Results

.1. Offline sensitivity tuning of the adaptive AE

Fig. 4A shows the reconstruction error during the a-AE sensi-
ivity tuning for different values of learning rate α and memory
batch size k, together with the R2

adj and the set point of conver-
gence (5*tau) derived from the exponential fitting. The smallest
value of the learning rate (α = 10−5) prevented the algorithm
to converge within an acceptable time-frame, as the set point
of convergence was consistently above 4000s for every size of
k. Using a short-time memory batch increased uncertainty in
the values of the reconstruction error over the training epochs
(Fig. 4A, grey lines). As a result, the exponential fitting yielded the
lowest R2

adj for all the values of α tested. With a bigger memory
batch and a learning rate α = 10−3, the adaptive algorithm
fit user’s movements in the fastest time frame (19s and 23s
with a mid-term and a long-term history batch respectively). The
learning rate of 10−4 had intermediate performance, allowing a
significantly faster convergence than that of 10−5, and slightly
slower than 10−3.

Fig. 4B shows the amplitude of cursor position discontinuity at
the instant of the AE parameters’ update. The higher the learning
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Fig. 4. Summary of sensitivity tuning results. Panel A: reconstruction values with α = 10−3, 10−4, 10−5 and three different values of history-batch size (2s — grey,
0s — black and 60s — red). Note that, on the x-axis, one training epoch is equal to 2s. A table containing the adjusted coefficient of determination R2

adj and the set
oint of convergence 5*tau after fitting a double exponential is shown for each combination of hyperparameters. Panel B: mean and standard error of static jump
alues during training epochs. Panel C: mean and standard error representing the a-AE rate of change during training epochs. The same colour scheme was used in
very panel.
F
F

ate, the bigger was the jump of the cursor. Vice versa, the bigger
he size of the history batch, the smaller was the jump. A similar
rend was found with the rate of changes of the AE map (Fig. 4C).
amely, the encoder had larger changes with larger learning rates
nd smaller history-batch sizes.

.2. Online test of the adaptive AE

The adaptive group completed a significantly higher number
f trials per unit time than the fixed group (rANOVA group effect:
(1, 18) = 6.35, p = 0.02, Fig. 5A). Specifically, we found a
ignificant interaction between group and time (rANOVA group
time effect: F (4, 72) = 5.5, p = 0.03). At the beginning of the

raining, in the first 60s when the map was equal for all partici-
ants (baseline), both the adaptive and the fixed group completed
he same number of trials (post-hoc comparison baseline: p =
). However, immediately after, the group that started working
ith the adaptive AE increased the rate of trials completed, with
espect to the group that continued working with the initial map.
erformance differences increased over time and were found
o be significant in the final two minutes of training (post-hoc
omparison last 2min: p = 0.009).
Both groups improved their accuracy over training time (rA-

OVA time effect: F (1, 18) = 24.6, p < 0.001). With the adaptive
lgorithm, participants outperformed the fixed group in terms
f accuracy when reaching the targets during the blind trials
Fig. 5B). However, this difference was not found statistically
ignificant (rANOVA group effect: F (1, 18) = 2.5, p = 0.13).
Finally, with practice all participants moved the cursor along

traighter lines (rANOVA time effect:F (1, 18) = 70.97, p < 0.001,
181
ig. 5C) and with increasing smoothness (rANOVA time effect:
(1, 18) = 116.8, p < 0.001), Fig. 5D). At the beginning of

the training phase, the initial performance of the fixed and the
adaptive group was comparable for each metric. Performance
differences became more evident during the second epoch of
training, even though not significantly.

Participants from both groups learned to organize their move-
ments in a latent manifold that progressively evolved towards a
bi-dimensional structure across training (Fig. 6A). In fact, the bi-
dimensionality index increased with training for both groups and
eventually coincided at the end of the training.

Noticeably, we recorded a significant difference when looking
at the Variance Accounted For by the AE map over the training
duration. The fixed map (Fig. 6B, black lines) was not able to
capture the movement manifold of its users, as the values of VAF
plateaued at around 25% for the entire duration of the reaching
task. On the other hand, allowing the AE map to change over
time consistently increased the fitness of the a-AE to the user’s
movement manifold (Fig. 6B, red lines) and eventually reached
the peak of 80% VAF at the end of the training duration.

Fig. 7 shows the similarity matrix representing the similarity
between the encoders obtained at the end of the training phase
for the adaptive group. Participants were ranked according to the
inter-subject similarity between final AE structure. Six partici-
pants converged towards fairly comparable encoders (S1, S2, S4,
S6, S8, S10 - 6 × 6 matrix in the top left corner, Fig. 7), while four
did not (S3, S5, S7, S9).

An example of how such similarity might have impacted the
control of the cursor in shown in Fig. 8. Namely, if we were to
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Fig. 5. Performance metrics for adaptive (red) and fixed (black) group. Panel A: Number of trials completed during baseline, after two, four, six minutes following
baseline and during the final two minutes of training. The asterisk represents a significant difference between groups during the last 2 min of training. Panel B:
Endpoint error during blind trials of each training epoch. Panel C-D: Linearity index and movement smoothness values during each training and test epoch. Mean
values across participants are plotted with 95% confidence interval.

Fig. 6. Panel A: Bi-dimensionality index values for adaptive (red) and static (black) group during each training epoch. Mean values across participants are plotted
with 95% confidence interval. Panel B: Variance accounted for (VAF) values for adaptive (red) and static (black) group during each batch of the training duration.
Mean across subjects is shown as a bold line for both groups.
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Fig. 7. Similarity matrix representing the similarity between final encoders
mong participants. The higher the value of a cell, the more similar the final
ncoders of the two participants of that cell. The matrix has been ranked to
luster participants with similar final encoders.

Fig. 8. Cursor trajectories of one participant (S8, black lines) during the final test
poch. We took the IMU data of S8 recorded during the final test epoch and
pplied the final encoder of a participant with whom S8 had a high similarity
S4, red lines, Panel A) and a low similarity (S7, red lines, Panel B).

ubstitute the final AE map that a participant used in the late
est phase with that of another participant whose map had a
omparable structure, the same participant would have been able
o cover the target space much more consistently (Fig. 8A) than
ith a map whose similarity was not as pronounced (Fig. 8B).

. Discussion

In this study we proposed an adaptive platform based on
he use of an iterative non-linear autoencoder to implement
nsupervised tracking of user’s manifold for improving the ease-
f-use of a human–machine interface. First and foremost, our
esults support the use of a non-linear AE as a proficient control
ap within the body–machine interface scheme. Moreover, the
daptive approach led to an increased representational efficiency
f the interface decoder while concurrently increasing users’ task-
elated performance, both in terms of number of trials completed
ver time and accuracy during reaching of blind trials. This result
uggests that the online co-adaptation process encourages the
evelopment of a more accurate internal model. Importantly,
he proposed approach has three salient features that makes it
ppealing in many applications other than the one tested here:
i) it cancels the cost of interrupting the operation of the device
o perform decoder recalibration, (ii) as no information about
he state of the task and/or intended task goals is needed, the
183
manifold tracking algorithm can be applied to a great variety of
contexts, iii) it does not rely on the existence of a stable neural or
movement manifold to compensate for decoder instabilities, al-
lowing it to be applied in the earliest stages of interface operation,
when the formation of new neural strategies is still on-going.

5.1. Autoencoder networks can proficiently control low-dimensional
devices

There is an increasing enthusiasm about using autoencoder
networks in the field of human–machine interfaces (HMIs). AEs
give the freedom of choosing the type of network architec-
ture and level of complexity (e.g., linear/non-linear, generative/
convolutional/recurrent, number of hidden layers and neurons
per layer), thus potentially allowing to better match the degree of
complexity of the input signal and hence allow for a great variety
of applications. For instance, AE-based approaches have recently
been employed for adversarial and variational domain adaptation
(Farshchian et al., 2018; Hsu et al., 2017) and for extracting
precise estimates of neural dynamics (Pandarinath et al., 2018).
However, applicability of non-linear AEs for the control of low
dimensional devices have seen limited efforts.

The use of AEs, or more specifically of their encoder sub-
network, as a forward map in a BoMI has been first proposed by
Pierella et al. (2018). In that study, an AE encoder was used to
map muscle activities recorded via EMG to the coordinates of a
computer cursor, similarly to the case considered here. However,
there is a crucial difference between these two implementations.
In Pierella et al. (2018), the AE cost function was modified by
adding a constraint to Eq. (2) to force the latent space dimen-
sions to follow a hierarchy in terms of their variance, mimicking
PCA (hierarchical autoencoder Scholz et al., 2008). The inclusion
of this constraint may limit the reconstruction power of the
autoencoder. Hence, the approach is not optimal for accurately
estimating the latent space defined by BoMI user movements,
with potential repercussions on the ease-of-use of the interface.
In order to avoid this potential pitfall and maximize the variance
accounted for by the latent representation (Portnova-Fahreeva
et al., 2020), here we decided to use a ‘‘vanilla’’ autoencoder that
performs DR by minimizing Eq. (2) without any added constraint.
The AE architecture used in our study was very parsimonious,
since the addition of more parameters did not increase the vari-
ance explained on the movement calibration data set. Even with
our parsimonious choice, the AE in Fig. 1 allowed retaining 93%
of the variance of the calibration data set in its latent encoding,
while a linear DR algorithm (PCA) would have accounted only for
72% of the original variance on the same data set.

Few other studies have explored the representational power of
AEs in HMIs. In the work of Vujaklija et al. (2018), an AE was used
to map the EMG activity of forearm muscles during instructed
wrist movements with one degree of freedom (DoF) (i.e., flex-
ion/extension, or radial/ulnar deviation) into cursor displacement
along a line. Losey et al. (2020) used an AE to extract non-linear
motion primitives from guided movements of a robotic arm.
The users controlled the robot by selecting latent actions with a
joystick and the AE decoder sub-network mapped the selected
action back into the high DoF robot movement.

However, while the use of non-linear AEs is ideal when mod-
elling any process that has a non-linear structure as in the pre-
vious examples, their use in the closed-loop schema of an HMI
might result challenging. On the one hand, having a better es-
timate of the BoMI user’s intentions might allow the user to
generate more accurate motor commands. On the other, non-
linearity comes with the loss of a major advantage of linear
control − the possibility to obtain a full repertoire of actions
from the direct summation of simpler actions. Nevertheless, this
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tudy found that learning to operate a non-linear interface is not
nly possible, but comparable to what has been observed with a
inear interface (De Santis & Mussa-Ivaldi, 2020), thus providing
proof of concept for the use of non-linear autoencoders for
uman–machine interaction.
In this study, we also took a step forward and utilized non-

inear AEs in an iterative way for closed-loop adaptation with a
earning agent. The online update of AEs posed different chal-
enges, such as the hyperparameter tuning that we discuss in
ection 5.2. Nevertheless, we showed that iteratively updating an
utoencoder used as control map to track user’s latent manifold
s not only successful (Fig. 6B) but led to an increase in user’s
ask-related performance when operating the interface.

.2. Map adaptation converges during offline test

When dealing with any learning algorithm, the common prob-
em of choosing a set of optimal parameters is typically referred
o as (hyper)parameter tuning (Claesen & De Moor, 2015). In
ur case, there were three main parameters that required such
uning: the learning rate α, the number of steps β of BGD and
he size of the history-batch. Each parameter influenced the a-AE
racking capability of user’s movement manifold.

First and foremost, we had to define which time frame of
ser’s previous movements could be considered representative
f its movement distribution. In this sense, the advantage of
sing a short-term memory is that the update operation would
e the least computationally expensive. However, the a-AE mem-
ry needs to contain a sufficiently comprehensive description of
ser’s movement statistics to achieve the desired convergence
ate target. Hence, a short-term memory is the most prone to
eing locally biased especially in the initial phase of practice with
he interface, as the movement variability may be confined to a
mall region of space. This may prevent the adaptive algorithm
rom converging within an acceptable time frame (see 5*tau in
Fig. 4A). Thus, one would want to consider a memory whose size
is increased (i.e., a mid-term or long-term memory). Increasing
the memory batch expands the time horizon of user movements
accounted for by the a-AE, making the online training more repre-
sentative of user’s evolving distribution and less prone to overfit
(or, equivalently, smoother), at the expense of a computationally
more expensive update. The choice of one over the other was
motivated by looking at the concurrent value of learning rate.

Results showed that a learning rate of α = 10−5 prevented
the algorithm from converging within an acceptable time frame.
Therefore, the a-AE would not have been able to keep track of
the evolving distribution of user’s movements. With α = 10−3,
the adaptive algorithm fit user’s movements in the fastest time
frame (25s with a long-term history batch of 60s, Fig. 4A). Ideally,
the adaptive algorithm should wait for the user to develop a
meaningful motor strategy before converging. However, during
the first stages of learning, BoMI users typically complete only
one reaching trial within the time frame of 20/30s. As mentioned
by Müller et al. (2017), when the machine learns too fast, the
co-adaptive process is unstable and unable to converge. The ad-
ditional metrics that we computed seem to support this claim,
as the rate of changes (Fig. 4B) and the static jump (Fig. 4C)
increased proportionally with the network learning rate. On the
other hand, with α = 10−4 (and a long-term memory of 60s), the
algorithm managed to reach the set point of convergence within
160 s, which was considerably closer to the target value of 2 min.

As a result, we opted for the intermediate learning rate (α =
10−4) and a long-term history batch (k = 60 s). This choice was
further motivated by the work of Dangi et al. (2013) and Orsborn
et al. (2011, 2012), recommending time scale of updates of 1 min
for applications to adaptive brain–machine interface, and those
184
of Danziger et al. (2009), Davidson and Wolpert (2003), Golub
et al. (2018) and Orban De Xivry and Lefèvre (2015) showing that
interfaces that changes too abruptly during online operation are
detrimental for users’ learning.

We ran the sensitivity tuning with a prefixed (and arbitrary)
value of β = 10. Since this value allowed to satisfy our tuning
goals, we decided to exclude this parameter from the tuning
procedure and chose it as our final parameter for the online
reaching test.

5.3. Map adaptation leads to superior performance

With the proposed online adaptive algorithm, participants
significantly outperformed the fixed group in terms of number of
trials completed over time. Indeed, by the end of the training, the
adaptive group reached a significantly higher number of targets
than the fixed group (Fig. 5A). It is interesting to notice that,
while both groups unsurprisingly started with the same level of
performance, the contribution of the a-AE started improving the
performance of the adaptive group already after four minutes.
The performance difference between the two groups became
increasingly significant over time, finally reaching its peak in the
last two minutes of training. These results suggest how, after
an initial period of co-adjustments between the BoMI users and
the interface, the adaptation of the latter towards user’s move-
ment manifold successfully helped participant’s ease-of-use of
the interface. Moreover, we found how the a-AE promoted the
development of an internal representation of the cursor space,
as participants were able to identify the position of targets more
precisely during the blind trials (Fig. 5B, with a nearly approached
significance threshold). This result is consistent with that ob-
tained by our previous study of an online co-adaptation with a
linear interface (De Santis & Mussa-Ivaldi, 2020). Interestingly,
both the fixed and the adaptive group organized their move-
ments towards a structure that gradually resembled that of a
two-dimensional manifold as they learned how to operate the
interface (Fig. 6A). This confirms our hypothesis that participants,
through motor learning, distributed their motions so as to match
the dimensionality of the sensory feedback, in line with previous
studies (Mosier et al., 2005; Ranganathan et al., 2014).

Remarkably, the proposed adaptive algorithm was successful
in tracking and tailoring its user’s movements (Fig. 6B). This
further validates the choice of the a-AE parameters made after the
sensitivity tuning and, together with the reported improvement
in task-related performance, confirms our initial hypothesis that
human–machine interaction can be promoted if the interface low
dimensional output and the human’s manifold are isomorphic.
The use of an adaptive interface that tracked participants’ man-
ifold over time allowed shaping their movement distribution in
a manifold resembling that of the interface itself. As a result, we
speculate that the Adaptive group converged to a more efficient
inverse model of the AE encoder. The finding that the Adaptive
group was less dependent on visual feedback with respect to
the Fixed group supports this idea. We believe that the Fixed
group was still able to efficiently operate the interface even in the
presence of more inaccurate estimates of the inverse AE encoder
because of the redundant nature of our interface. Namely, par-
ticipants could have used different motor strategies to complete
the task. Therefore, learning of an accurate predictive component
was not necessary as long as participants could have relied on the
visual feedback to compensate for aiming inaccuracies. Moreover,
the Static group could have also attained high accuracy from the
prolonged exposure to the same map.
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.4. Map adaptation is guided by the individual’s learning trajectory

If on the one hand the a-AE was successful in tracking the
ovement manifold of each participant, on the other we noted

hat the changes in the encoder were not consistent across par-
icipants. Namely, we could divide the BoMI users into two main
roups: those who converged towards a similar encoder structure
t the end of the training (S1, S2, S4, S6, S8, S10 - Fig. 7) and those
hose maps did not converge to a particular similarity value
S3, S5, S7, S9 - Fig. 7). All the participants were able to reach a
atisfactory level of performance regardless of whether the map
as converging towards a particular structure. Furthermore, as
entioned before, in addition to being adaptive, the redundant
haracter of the interface allowed each participant to complete
he task with a different strategy. We speculate that the final
ncoder was merely a result of the learning trajectory of each
articipant. Indeed, if two participants were to exhibit the same
ovement dynamics (i.e., strategy) from the start to the end of

the practice, it is reasonable to assume that they would have
converged towards the same encoder. Since this was not always
the case, we concluded that some participants effectively learned
the task in a different way. It is important to remark that the
a-AE was able to guide them to an efficient resolution of the task
regardless of the inverse model employed by the participant. This
is a remarkable characteristic that increases the generalization
capability of the proposed interface.

5.5. Perspective on current adaptive interfaces

The problem of building adaptive interfaces is raising increas-
ing interest in the realm of human–machine interactions. Here
we focused on the development of an adaptive interface that pro-
vides a seamless interaction with the user during online operation
of the interface. In the field of BMIs, the closed-loop adaptation
of the interface is driven by some policies associated with the
user’s known movement intention (Vidaurre et al., 2010). This
results in supervised adaptation as, for example, it would require
the user to perform pre-selected movements to guide the update
of the interface parameters (Dangi et al., 2014; Orsborn et al.,
2012). Another possible approach to adapt the interface so as to
account for user’s motor strategies could stem from Reinforce-
ment Learning (RL) (Sutton & Barto, 2018), where a software
agent continually interacts with an environment and take actions
in order to maximize some reward. Previous studies (DiGiovanna
et al., 2009; Mahmoudi et al., 2008; Sanchez et al., 2009) have
used RL-inspired algorithms to modify the agent’s (the interface)
behaviour according to what was considered desirable for the
user. The RL approach, however, still requires the definition of a
value function in order to assign a reward to an observed action.

To improve the generalizability of the adaptive interface across
tasks, an unsupervised approach is most appropriate. If on the one
hand Mehring et al. proved that an unsupervised co-adaptation
is theoretically possible (Gürel & Mehring, 2012), on the other
there is still a clear gap of knowledge in the implementation of
an unsupervised adaptation concurrent with the operation of the
interface. In this sense, a recent work (Degenhart et al., 2020)
proved that an unsupervised re-alignment of intrinsic manifold
of neural activities could stabilize interface performance in the
presence of recording instabilities. There are similarities between
the approach described in our study and theirs, as both share
the basic rationale of exploiting latent manifolds for updating
the interface. However, unlike in Degenhart et al. (2020), here
we are concerned with tracking a time-varying manifold, rather
than stabilizing it against artefactual changes. Therefore, our co-
adaptation approach is intended to operate immediately, without
waiting for the users to having developed a stable motor strategy.
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We want to stress that the this study represents a novel
approach for designing an adaptive interface, as it avoids con-
straints that other state-of-the-art interfaces commonly have,
such as the need of interrupting the operation of the device, of
relying on information about the state of the task, or relying
on the existence of a stable neural or movement manifold. As
such, directly comparing the performance of our interface against
those of other interfaces with completely different nature is not
straightforward. Perhaps a comparison can be made with an
earlier study performed by our own group (De Santis & Mussa-
Ivaldi, 2020), in which a linear model, iterative PCA, was used to
align the space of body movements with the space encoded by
the interface. However, the experimental setups differed in the
placement of the inertial sensors (two IMUs on the arms in this
study, four IMUs – two on the arms and two on the forearms
– in the previous study). Nonetheless, the study presented in
this manuscript confirmed some of the findings of our previous
one, in particular the ability of the adaptive interface to lead
to the development of a more faithful internal representation of
the control problem (Fig. 6B). Furthermore, differently from the
linear case, we found that, with the proposed non-linear adaptive
interface, participants were able to significantly outperform those
practising with a static map in terms of target acquisition rate.
We believe that this difference might be due to the superiority
of non-linear models in estimating non-linear latent manifolds
(Tenenbaum et al., 2000) such as those spanned by upper body
kinematics. This has further implications for enhancing the gen-
eralizability of the interface proposed in this study, as it might
be more appropriate when dealing with manifolds derived from
processes such as neural recordings, as well as when developing
a controller for multi-degrees-of-freedom devices.

5.6. Limitations

The choice of the learning rate α of the network was motivated
y the tuning procedure we ran as a first stage of this study.
owever, our implementation of the online co-adaptation did
ot consider the rate of the BoMI user learning the task. In
his sense, an online co-adaptation between the learning rate
of the network and the learning rate of the user operating

he BoMI might improve the ease-of-use of the interface itself.
his could be achieved by implementing a policy that adapts α

accordingly to the user’s learning time scale. A higher value of
α might be beneficial during the first part of the learning curve
(cognitive stage Fitts & Posner, 1967). During this stage of learn-
ing, humans typically present high-movement, and consequently,
high-performance variability. As stated before, however, there
is a dangerous threshold, after which forcing people to explore
more will, most likely, prevent them from learning the task at
all. We did not find any study that deals with the problem of
developing an algorithm that accounts for this threshold, and, as a
result, further efforts in this sense are required. Going back to the
policy design, as soon as the policy registers an increase in user’s
performance, the value of α could be decreased to encourage
a strategy consolidation. The policy might eventually set the
learning rate of the network to a minimum value when user’s
performance is about to plateau. Our study, however, suggested
that letting the interface continuously adapting, even after the
user reached a sufficient capability of controlling the cursor, did
not disrupt motor learning. In other words, the proposed interface
found its own stability without any supervision. We assume that
this was a result of the design choice to consider an extensive
portion of user’s latest movements. Thus, as long as the statistical
distribution of those movements was not changing, the encoder
was not changing substantially, de facto autoregulating itself.
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